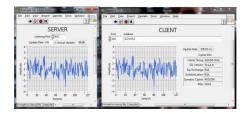
Encryption Compendium for LabVIEW™

Datasheet

Features Overview


- · Hashes.
- Symmetric encryption.
- SSL and TLS communications.
- SSH Client communications.
- Diffie-Hellman and Elliptic Curve key exchange.
- RSA, DSA and ECDSA signature generation, signing and verification.
- X509 certificate generation, signing and verification.
- PEM and DER certificate formats.
- Base 64 and Base 58 data encoding.
- Random numbers library.
- Bitcoin address library.
- Numerous examples.

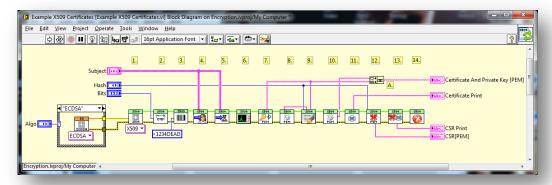
Platforms

Windows[®] 7 or later

LabVIEW™ Versions

• Windows® - 2012 or later

The *Encryption Compendium for LabVIEW* $^{\text{TM}}$ offers developers advanced encryption, hashing and secure communication capabilities in LabVIEW $^{\text{TM}}$.


It is a comprehensive and feature rich API covering a multitude of technologies centred around securing data and communications. It comes complete with many symmetric and asymmetric encryption examples that can be used as a starting point to dramtically reduce the development time of your applications. Includes key generation, message signing, certificate generation and communications over Secure Sockets Layer (SSL), Transport Layer Security (TLS) and Secure Shell (SSH).

Data and information is valuable.

- Prevent it from being stolen.
- Protect it from competitors.
- Preserve ideas and intellectual property.
- Provide peace of mind.

Secure data and information with the Encryption Compendium for LabVIEW™.

- Safely store it locally and in the cloud.
- Shield it from competitors.
- Safeguard ideas and intellectual property.
- Sanctuary for data and information.

The *Encryption Compendium for LabVIEW*™ leverages the industry standard OpenSSL binaries* to provide LabVIEW developers with a complete suite of encryption capabilities for modern applications.

 $^{* \}textit{OpenSSL binaries are supplied with the Lab VIEW} \textit{m} \textit{software installation and are maintained by National Instruments}. \\$

Encryption Compendium for LabVIEW™

Datasheet

Hashes

- MD4
- MD5
- SHA 1/256/384/512
- RIPEMD160
- WHIRLPOOL
- HMAC

Symmetric Encryption

- AES 128/192/256 ECB/CBC/CFB/OFB
- Blowfish *ECB/CBC/CFB/OFB*
- Cast-cbc
- Des ECB/CBC/CFB/OFB
- Des-ede CBC/CFB/OFB
- Des-ede3
 CBC/CFB/OFB
- Desx
- Idea ECB/CBC/CFB/OFB
- RC2 ECB/CBC/CFB/OFB
- RC4-40
- RC4

SSL/TLS**

- SSL2, SSL3
- TLS1, TLS1.2

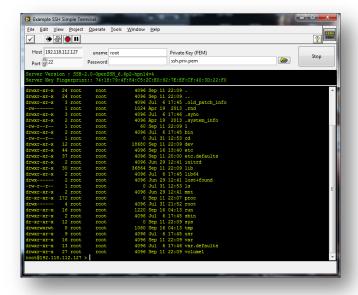
Digital Signatures

- RSA
- DSA
- ECDSA
- x509

Key Exchange Algorithms

- Diffie-Hellman
- Elliptic Curve Diffie-Hellman

Key and Certificate Formats

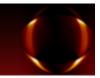

- PEM
- DER

Encoding

- Base64
- Base58

SSH

- SSH 1 Client
- SSH 2 Client
- Execute Command
- Interactive Shell Sessions
- Key Exchanges:
 - o ecdh-sha2-nistp256.
 - diffie-hellman-group1sha1.
 - o diffie-hellmangroup14-sha1
- Authentication:
 - o Password.
 - o Public-key.
- Ciphers:
 - o aes256-ctr.
 - o aes192-ctr.
 - o aes128-ctr.
 - o aes256-cbc.
 - o aes192-cbc.
 - aes128-cbc.3des-cbc.
 - o des-cbc-ssh1.
 - o blowfish-cbc.



NOTE.

Available features are dependent on the particular OpenSSL binaries installed with LabVIEW. For example, LabVIEW 2012 was originally deployed with OpenSSL binaries that do not support TLS 1.2.

^{**} Over TCP. UDP is not currently supported.

Encryption Compendium for LabVIEWTM Datasheet

Elliptic	Curves
c2pnb163v1	secp112r1
c2pnb163v2	secp112r2
c2pnb163v3	secp128r1
c2pnb176v1	secp128r2
c2tnb191v1	secp160k1
c2tnb191v2	secp160r1
c2tnb191v3	secp160r2
c2onb191v4	secp192k1
c2onb191v5	secp224k1
c2pnb208w1	secp224r1
c2tnb239v1	secp256k1
c2tnb239v2	secp384r1
c2tnb239v3	secp521r1
c2onb239v4	sect113r1
c2onb239v5	sect113r2
c2pnb272w1	sect131r1
c2pnb304w1	sect131r2
c2tnb359v1	sect163k1
c2pnb368w1	sect163r1
c2tnb431r1	sect163r2
prime192v1	sect193r1
prime192v2	sect193r2
prime192v3	sect233k1
prime239v1	sect233r1
prime239v2	sect239k1
prime239v3	sect283k1
prime256v1	sect283r1
	sect409k1
	sect409r1
	sect571k1
	sect571r1

Supplemental Libraries

- Bitcoin addresses
 - oPrivate Key to Address
 - oPrivate Key to WIF
 - o Public Key from Private Key
 - oPublic Key to Address
 - o Public Key from WIF
- Random number
 - \circ Init
 - o Bytes
 - o Cleanup
 - o Load File
 - Write File
 - o Bytes